Periodique Trimestriel de l'ASBL WATERLOO ELECTRONICS CLUB et de la section UBA de WTO.

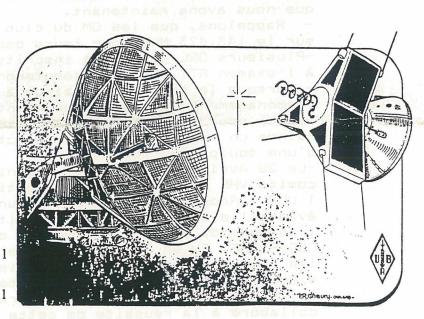
CCP: 000-0526931-27

Courrier : P.O.BOX 129 1410 WATERLOO.

LOCAL:

Campus ULB-VUB RHODE rue des Chevaux 65-67 1640 Rhode-St-Genese.

REUNIONS:


Le Vendredi de 19H30 a l'aube.

No. 52 2e TRIMESTRE 1990

Buneau de depot : WATERLOO.

SOMMAIRE

DE TOUT UN PEU ON4TX BALISES 144 MHz REF STATUTS ASBL ON4SR FIELD DAY 1990 ON4BE LE SOLEIL ON5ES CONVERTISSEUR 50/28 ONL1371 FILTRE PB, PREAMPLI 50 MHZ ONL 1371

AMPLI LINEAIRE 2M/80W

- AGENDA-

- ON TWR SERA FERME EN JUILLET ET EN AOUT.
- 7/8 Juillet: Contest VHF/UHF
- 15/16 Septembre : UKW Tagung à Weinheim
- 22 Septembre : Examen RTT (B)
 - 22/23 Septembre : Merato à Malines
 - 30 Septembre : Brocante à Evere
 - 27 Octobre : RTT, Examen C

Siege de l'ASBL : Avenue des Croix du Feu , 19 , 1410 WATERLOO.

Editeur Responsable : ON4TX Roger VANMARCKE Mosnsberg 58 - 1180 BRUXELLES.

- Si vous n'êtes pas encore en règle de cotisation pour l'année 1990, votre indicatif sur l'étiquette de votre Gigazette sera colorée en jaune. Ceciconstitue un deuxième rappel. Afin devous mettre en ordre, versez sans tarder 500f au CCP de Waterloo Electronics Club. Merci.
- -Par suite de l'utilisation intensive des locaux à Rhode durant la période de vacances scolaires, ceux-ci seront fermés durant les mois de Juillet et Août. Rendez-vous est donné pour la reprise des activités le premier vendredi de Septembre. Bonnes vacances à tous.
- Le 20 Avril dernier, se déroulaient dans nos locaux, les élections UBA et l'AGextraordinaire de l'ASBL. Une trentaine demembres assistaient à cette réunion. ON4TX, seul candidat au poste de P.S. (président de section) a été réélu. Du côté ASBL, la réunion avait pour objetla modification des statuts. Celle-ci aété adoptée à l'unanimité. Les nouveaux statuts paraîtront incessamment dans le "Moniteur Belge". Plus loin sous la plume de ON4SR vous trouverez les nouveaux statuts.
- Durant les vacances les OM du club se retrouveront comme chaque année sur le 14,290MHz à 18h30 (heure locale), ON4TX aaussi prévu un "sked" à08h30 (locale). On devrait entendre :YU/ON4BF, F/ON7NK, YU/ON5YN et YU/ON4TX. Ce sont les seuls renseignements que nous avons maintenant.
- Rappelons, que les OM du club ont l'habitude de se retrouver sur le 145,475 MHz pour leurs qso locaux.
- -Plusieurs ONL sont déjà inscrits pour les cours de préparation à l'examen RTT. Ceux-ci débuteront en Septembre.
- Lorsque le toit de la maison à Rhode sera réparé, les travaux d'aménagement du grenier pourront commencer afin d'arranger ce-lui-ci pour accueillir nos stations-radio. Papuis plusieurs se-maines un nouvel escalier escamotable a été monté par les soins d'une équipe de l'ULB.
- -Le 28 Avril dernier, nous organisions en collaboration avec le comité VHF de l'UBA, une convention VHF, UHF dans les locaux de l'ULB à Rhode. Celle-ci aconnu un grand succès, grâce à ungrand évantail d'activités. Il y avait des conférences le matin et l'après-midi dans l'auditorium, des démonstrations : satellite OSCAR,EME, TV en 23 cm, 10 GHz etc..Des réalisations personnelles, notamment les belles réalisations de Raymond, ON5FQ. Plusieurs firmes présentaientdu matériel ainsi quedes publications à l'usage des Radio-amateurs. Grand merci à tous ceux qui ont collaboré à la réussite de cette belle journée et spécialement aux XYL qui ont été QRV à la cuisine. La journée s'est terminée dans la joie et la bonne humeur chez Henri, ON10H avec les deux conférenciers allemands.
- Les 5/6 Mai lors du contest UHF, ON7WR a encore utilisé ses conditions minimales, car le pylone abattu par la tempête n'a toujours pas été livrépar De Kerf. En 70cm, nousavons travaillé avec une 4 x 21 éléments en mauvais état, en 23cm, on utilisait une seule antenne 21éléments et en 13cm, une antenneparabolique de 1m de diamètre située à 7m au-dessus du sol. Malgré cela de bonnes liaisons ont été effectuées: plus de 500 km en 23et 13cm et plus de 650 km en 70cm.
- Nous avons participé au contest du GDV 80m entant que station joker. ON40T et ON4TX avaient pour la circonstance installé une antenne LEVY de 40 m au "Trou du bois". Peu d'opérateurs malheureusement pour opérer la station : ON4ZD, ON4ZT et ON4TX.
- Nous avons étésollicité par la section deBXE afin de participeraux Journées Portes Ouvertes de l'INRaCi au Parc Duden, pour

opérer la station décamétrique, seul ON4TX a installé et opéré lastation ON4UBA. Le dimanche matin, uneéquipe de ON4UB a opéré la station de 11h à midi.

- ON7WR/A a été QRV le 24 Juin aLinkebeek, pour prêter son concourslors d'activités d'une troupe scoute qui avait eu leur local incendié et qui organisait cette journée pour récupérer des fonds afin de reconstruireun nouveau local. Ont participé àcette activité : ON4OT, ON4SR et ON4TX.
- CQ/DL de juillet publie la liste des pays avec licence CEPT : DL/DC, EA1-EA9, EB1-EB9, F, F (Corse), FG, FH, FJ,FK,FM, FO, FP, FR, FT, FW, FY, G, GD, GI, GJ, GU, GW, HB9, HB0, LA, JW, JX, LX, OE, OH, ON, OZ, OX, OY, PA, SMO-SM7, SV1-SV9, SY, 3A.
- On parle de deux nouveaux pays DXCC, il s'agit de GROSSE-ILE, petite île dans le St Laurent à 29 miles de Quebec. Du point de vue de statut, il est identiqueà St Paul et Sable. Une opération est prévue pour les 24/29 ou 27/31 Juillet. L'autre pays c'est PENGUIN ISL. qui est une chaîne de 13 petites îles près de la côte de Namibie. Une expédition est prévue, sur Seal Island qui est une de ces îles, du 14 au 20 Juillet.
- AU SECOURS, je n'ai plus d'articles de réserve pour la GIGAZ.

BROCANTE A EVERE

LA BROCANTE N'AYANT PAS ETE PROGRAMMEE CETTE ANNEE A ON7WR, LA SECTION UBA- BXE, EN COLLABORATION AVEC LE RADIO-CLUB DE BRU-XELLES (Evere) ORGANISENT UNE GRANDE BROCANTE RADIO-AMATEUR, DE MATERIEL NEUF ET D'OCCASION, LE DIMANCHE 30 SEPTEMBRE DE 10 A 17 HEURES DANS LA SALLE OMNISPORT DUCOMPLEXE SPORTIF D'EVERE SITUEE AVENUE DES ANCIENS COMBATTANTS.

SUIVRE LES PANNEAUX : BROCANTE-AMATEUR.

RESERVATION DE STANDS : AUPRES DU PS. UBA : Roger Florus, TEL . 081/877003 ou A ON4AY, Alex Malengrez, TEL. 02/7350786. BIENVENUE A TOUS.

Communiqué par ON4AY.

LES BALISES 144 MHz

Indicatif	QRG	WW LOC	EE LOC	Puis.	Antenne	QTF	ASL	MOD.
4N3ZVK	144.000	JN76MC	HG					
HG1BVA	144.000		IH	_				
UZ1AWO		KO59EW	PT02C	5 3	40.00	OMNI		A1A
UW1PA U6L	144.034	MP09 LN07BQ	ED UH21J	3	10 élé.	330°		A1A
U6Y	144.085		UE31A	1.5	Dipôle	0/180°		
ZS3VHF	144,115			70	11 élé.	00	2300	A1A
UZ9UT		NO35BI	RP51A	15	9 élé. Yagi	270°	260	A1A
OE3XAA	144.126		II71D	0.5	Halo	OMNI	840	A1A
UP2WN		KO25DB	MP72J	3	Turnstile	OMNI	??	A1A
5B4CY UZ3KP		KM64HT KO85VS	QU14G SP19D	40 5	6+6 élé. Yagi	NW	2000	A1A
UZ3KPO	144.142		SP19D	5	9 élé. Yagi 9 élé.	45°		A1A A1A
UZ3DXJ	144.145		SP54A	1	Dipôle	310		A1A
UZ4NWD	144.145	LO48RU	YS18H	0.5	9 élé.	225°		A1A
ZB2VHF	144.145	_	XW64G		ł			
OZ3VHF	144,149		FP53H	1.1	Halo	OMNI	35	A1A
EA3XS UZ3MWQ	144.152	JN11CQ	BB21C	2.5	10 élé. Yagi	35°	400	A1A
R9XI	144.160	KO87SV MP06CA	SR08D EA72F	5	Turnstile 16 élé.	OMNI 350°	130	A1A
UL8PWA	144.162	MN69	KJ] 3	10 ele.	350-		A1A A1A
UQ2GS	144.165	KO35	NP	5	Ground plane	OMNI		A1A
UT5U	144.175	KO50CG	PK52F	5	Dipôle	OMNI	169	A1A
UZ3PWJ		KO93BD	TN61E		Turnstile	OMNI		A1A
UB4JXN	144.190	KN65TT	QF19G	١.				A1A
UA9C UZ6AWA	144.193	LO96WW KN95LB	DQ10J TF75C	3	Turnstile	OMNI		A1A
UZ4NWF	144.193	LO49JJ	YT44D	5	9 élé.	345°	110	A1A A1A
RL7BZ	144.201	MO31FW	HL03G	3	9 élé.	90°	110	AIA
UT4JWD	144.201	KN64RO	QE38H	3	0.00.	OMNI		A1A
UZ9FYR	144.215	LO88??	CS65G	5	15 dB	NNW	??	A1A
UQ2GEZ	144.220	KO37MJ	NR46F			OMNI		A1A
UASUKO		NO33	RN	į				
UAOW	144.244	NO53OU	RP17H		9 élé.	270°		A1A
UB4CWY UZ3TYA	144.247 144.250	KN59TM LO16QT	PT39F VQ17C	3	9 élé.	OMNI SE		A1A A1A
UZ9AWN	144.250	MO05QD	EP67D	1	4x7 élé. Yagi	00		AIA
UA9KK	144.268	MP65LN	KZ35C		6 élé.	0°		A1A
UZ4NXC	144.270		YR	5	Dipôle			A1A
UL78BT	144.275	MO51QE	JL67C	_	12 élé.			A1A
UA6XBO UZ9AWD	144.282 144.293	LN13TM	VD39F	5	7 élé.	330°		A1A
UZ9YWQ	144.300	LO93MI NO23WJ	DN56H QN50E	5	4 x zickzack 5 élé.	0/270°		A1A A1A
UO5OID	144.312	KN46DL	OG42A	5	Turnstile	OMNI		AIA
UZ3UZA		LO06LX	UQ05B		Dipôle	J		A1A
UZ10WV	144.342	KP94VN	TY39C	0.1	Dipôle	130/130		A1A
UB2JWS	144.360	KN74BX	RE01B		21 dB gain	0°		A1A
UB4G	144.371	KN66LS	QG15D	5	Dipôle	N/S	80	A1A
UB4YWW RB4IZS	144.371 144.392	KN28WG KN88SR	MI60E SI28H	3.5 3		OMNI		A1A
UB5R	144.398	KO51HU	PL14H	5	Dipôle	135/135 0/180°		A1A A1A
UB4RXI	144.400	KO51TU	PL19H	5	Dipôle	0/180°		AIA
UB5BDC	144.400	KN29VB	MJ79C	5	Turnstile	OMNI		A1A
UZ3IWB	144.403	KO76WU	RQ20A	2	Ground plane	OMNI		A1A
UL8GWW		MN83	MD	5	Dipôle			A1A
UZ9XZZ	144.468	MP06CA	EA72F	5	2x9 élé.	15/195°	000	A1A
IT9A IS0A	144.805 144.810	JM67LX JN40SX	GX05B	30 ERP	2xbig wheel	OMNI	825	A1A
IAA	144.815	JN54LG	EA08A FE55D	25 ERP 20 ERP	Turnstile 2xTurnstile	OMNI	450 950	A1A A1A
17A	144.820	JN71UR	HB29A	12 ERP	Big wheel	OMNI	1012	A1A
IOA	144.825	JN61ES	GB12D	30 ERP	2xbig wheel	OMNI	30	A1A
9H1A	144.830	JM75FV	HV03F	1.5	Turnstile	OMNI	210	A1A
9H1VHF	144.830	JM75FV	HV03F	1.5	Turnstile	OMNI	210	A1A
IIG	144.830	JN35SH	DF58C	20 ERP	Big wheel	OMNI	625	A1A
IT9G	144.840	JM68QE	GY67C	35 ERP	5 élé. Yagi	0°	150	A1A
IX1A	144.845	JN35OQ	DF27G	20 ERP	11 élé. Yagi	SW	750	A1A
DLOUB HB9H	144.850 144.850	J062QL JN46KE	GM47B EG	5	4xdipôle	OMNI	80	F1A
ISA	144.850	JN53FR	FD23H	4 ERP	Big wheel	OMNI	918	A1A
LA5VHF	144.855	JP77KI	HA01C	100 ERP	2x6 élé. Quad	110/175°	260	A1A
لـــــل								

<u> </u>	T		1 ===					
LA1VHF	144.860	1	ET13C	12	Turnstile	OMNI	1882	A1A
HB9HB	144.865	1	DH66C	10	10 élé. Yagi	NNW	1300	F1A
LA6VHF	144.865	1	PD41H	200 ERP	6 élé. Yagi	210°	70	A1A
EA1VHF	144.867		VD59E	25	5 élé. Yagi	NE		A1A
I2M	144.870		FF61F	20 ERP	Big wheel	OMNI	52	A1A
LA2VHF	144.870		FX52D	500 ERP	10 élé. Yagi	15°	710	A1A
PI7ZWL	144.870		DM31E	1.5	0 dB	OMNI	30	F1A
HB9W	144.875	1	EH43D	0.036 ERP		OMNI	490	A1A
2G	144.875		EF18J	30 ERP	2xbig wheel	OMNI	1330	A1A
SK2VHF	144.875	JP94TF	JY69H	5	2x10 élé.	0°	300	A1A
.A3VHF	144.880	JO38PB	DS77J	120 ERP	16 élé.	180°	135	A1A
OK0ED	144.885	JN99BO	JJ31A	0.1	2xdipôle	OMNI	560	F1A
OY6VHF	144.885	IP62NA	WW76D	20	2x6 élé.	45/135°	280	A1A
8A	144.890	JM78WD	HY70F	20 ERP	2xturnstile	OMNI	1958	A1A
A4VHF	144.890	JP200Q	CU27G	200 ERP	4x8 élé.	180°	48	A1A
SK2VHG	144.890	KP07MV	KB06F	60	16 élé. Yagi	180°	495	A1A
A3VHF	144.892	JN11LS	BB15D	1	Halo	OMNI	155	A1A
BA2B	144.900	JN33RR	DD28H	50 W ERP	13 élé. Yagi	E	50	A1A
)BOOP	144.900	JN59WI	FJ60H	4	Big wheel	OMNI	522	A1A
HV9HC	144.900	KP02TG	KW59F	50/100	2x6 élé. Yagi	N/SW	220	A1A
SP9VHE	144.900	JO90SK	JK48C	0.150	•	OMNI	504	
DX3VHF	144.902	GP60QQ		10	2x4 élé. Quad		70	AIA
XOVHF	144.904	JN39CP	DJ22F	10		OMNI	'•	A1A
DFOVE	144.905	JO40XX	EK10A	0.04	Dipôle	0/180°	485	F1A
EX3THF	144,905		YI13D	30	2x9 élé. Yagi	90°	80	FIA
OLOPR	144.910		EO54C	150	6 élé. Yagi	0/180°	100	AIA
KOOE	144.915		DK12A	30 ERP	10 élé. Yagi	NNE	265	F1A
B3CTC	144.915	1	XK46D	40 ERP	3 élé. Yagi	45°	320	F1A
EA6VHF	144.918		AY07J	25	5 élé. Yagi	NE	150	A1A
12WRB	144.920		WM44E	200 ERP	5 élé. Yagi	95°	248	A1A
K7VHF	144.920		GP38C	30	2xbig wheel	OMNI	190	A1A
BSVHF	144.925	1	AL52J	40 ERP	2x3 élé. Yagi	315°	190	FIA
BOJT	144.927	1	GH14C	30 ERP	2x4+4 dipôle	W/NNW	785	FIA
Z7IGY	144.930		FP39B	50 ERP	Big wheel	OMNI	96	A1A
/U2V	144,930		ID54F	1	Crossdipôle	OMNI	780	A1A
/41M	144.932		GL53G	0.2 ERP	2xdipôle	OMNI	232	AIA
OKOEA	144.933		HK29D	.004	2xdipôle	OMNI	1355	FIA
PITCIS	144.935		CM	50	Dipôle	90/270°	40	A1A
KOVHF	144.936		JT41G	1	4 élé.	0°	23	A1A
F8VHF	144.939		QY77E	40	6 élé. Yagi	S/E	100	FIA
CLOUH	144,940		EL68F	1 ERP	V-dipôle	OMNI	385	
U7VHF	144,942		JF69F	LLNF	V-dipole	Civilal	300	A1A
3B3EGI	144,945		wo					
K1VHF	144.950		JR51D,	10	2xclover leaf	OMNI	60	A1A
X4VHF	144.955		AF69C	20	Big wheel	OMNI	600	A1A
O2KHP		KN05OS	KF17F	2.5	Turnstile	OMNI	80	A1A
SK4MPI	144.960	_	HU46D	100	4x6 élé. Yagi	OMIM	510	ATA
OKOEB	144.963		HI12A	.1				
FOANN		JN59PJ	FJ47E	0.02	Big wheel	OMNI	1083	
B3LER			1	1	Dipôle	OMNI	630	FIA
	144.965		ZU65F	50 ERP	3 élé. Yagi	22°	107	F1A
OK0EO		JN89QQ	N27C	.05	Cross dipôle	OMNI	610	F1A
LOSG	144.975		GI22C	15	2x4 élé.	OMNI	500	AIA
BBBANG		IO86MN	YQ35C	20 ERP	4 élé. Yagi	160°	370	F1A
OKOET OKOEC		KN08SU	KI18A	.5	HB9CV	W	981	F1A
200 UP (2	144.980		GK62H	.08	3 élé. Yagi	E	790	F1A
		IO ACCO						
ON4VHF	144.985		CK23E	2.5	Big wheel	OMNI		F1A
ON4VHF Y41B	144.985 144.985	JO53QP	FN28F	10	2xbig wheel	OMNI		F1A
ON4VHF	144.985 144.985				•		685 295	

DOCUMENT EXTRAIT DU REF

JUIN 1990

STATUTS

Art.1er.

L'association est dénommée "Waterloo Electronics Club".A.S.B.L.Son siège est fixé présentement à Waterloo, Avenue des Croix du Feu, 19 - 1410 Waterloo. Il pourra être transféré en tout endroit de la commune, par simple décision du conseil d'administration.

Art.2.

L'association a pour but :

1º.d'organiser les loisirs, réunir et aider les jeunes qui s'intéressent à l'électronique en général.

2º.de promouvoir et développer, tant sur le plan théorique qu'expérimental, les applications de la radio-électricité. Elle peut procéder à des essais et des recherches, notamment dans le domaine de l'émission et de la réception en ondes courtes et de la télévision d'amateur. Elle peut faire toutes les opérations en rapport direct ou indirect avec son objet et peut donner son concours à des activités similaires à son objet. L'association est constituée en dehors de tout esprit politique, confessionnel ou philosophique.

Art.3.

L'association est composée uniquement de membres effectifs. Le nombre des associés ne peut être inférieur à dix.

Art.4.

Pour être admise comme membre, toute personne physique doit remplir le formulaire prévu à cet effet et être parrainée par deux membres. Le conseil d'administration peut à tout moment s'opposer à l'adhésion, la participation, ou la présence aux activités du club d'un membre. Toute demande émanant d'un mineur d'âge doit être contresignée par le père, la mère ou le représentant légal.

Art.5.

Pour être éligible en qualité d'administrateur, le candidat devra avoir une ancienneté de membre à l'association d'une année civile au moins, précédant l'exercice en cours et être en règle de cotisation. Il devra déposer un acte écrit de candidature adressée au président avant le 1er septembre qui précède l'assemblée générale statutaire.

Art.6.

Le membre démissionnaire ou exclu:, leurs héritiers ou ayant droit, n'ont aucun droit à faire valoir sur l'avoir de l'association.

Art.7.

Les membres payent une cotisation annuelle. Le montant de cette cotisation est fixé par le conseil d'administration et ne peut excéder 1.000 francs.

Art.8.

L'assemblée générale est présidée par le président du conseil Elle a le pouvoir de modifier les statuts, de nommer et révoquer les administrateurs, d'approuver les budgets et les comptes annuels et d'exercer tous autres pouvoirs dérivant de la loi ou lui conférés par le présent statut.

Art.9.

Les convocations à l'assemblée générale sont faites par le conseil d'administration et adressées à tous les membres. La convocation contient l'ordre du jour.

Art.10.

Tous les membres ont un droit de vote égal à l'assemblée générale. En cas de partage des voix, celle du président ou de l'administrateur qui le remplace est prépondérante. En aucun cas les membres ne peuvent être porteurs de plus d'une procuration. Les décisions de l'assemblée générale sonr portées à la connaissance de tous les membres par affichage au siège de l'association.

Art.11.

Il doit être tenu au moins une assemblée générale ordinaire chaque année, dans le courant du mois d'octobre.

Art.12.

L'association est administrée par le conseil d'administration composé de cinq membres nommés pour trois ans par l'assemblée générale. Les administrateurs peuvent être révoqués à tout moment. Ils sont rééligibles. Le conseil d'administration engage valablement l'association pour les actes d'administration et de disposition ne relevant pas de la compétence exclusive de l'assemblée générale. Il peut déléguer ses pouvoirs de gestion journalière à l'un ou plusieurs de ses membres ou à un tiers, associé ou non. Le conseil désigne parmi ses membres : un président, un vice-président, un secrétaire, un trésorier et un collaborateur technique.

Art.13.

En cas de vacance de mandat d'un ou plusieurs administrateurs, ce ou ces mandats seront assurés par les administrateurs restants jusqu'à la prochaine assemblée générale.

Art.14.

Le conseil d'administration se réunit au moins une fois par mois. Il ne peut valablement délibérer que si la moitié au moins des membres sont présents ou représentés.

Art.15.

Tous les actes engageant l'association sont signés au minimum par deux administrateurs.

Art.16.

Chaque année à la date du 15 septembre, le compte de l'exercice écoulé est arrêté et le budget du prochain exercice est dressé. L'un et l'autre sont soumis à l'approbation de l'assemblée générale.

Art.17.

Les mandats des administrateurs ne donnent lieu à aucune rémunération.

Art.18.

En cas de dissolution de l'association ses biens seront transmis à une autre association dont le but est identique, similaire ou connexe au sien. A défaut l'assemblée générale décide à la simple majorité la répartition du solde actif après apurement du passif.

Art.19.

La loi du 27 juin 1921 s'applique pour tout ce qui n'est pas prévu aux présents statuts.

Art.20.

Sont nommés administrateurs, pour une durée de trois ans, les suivants, qui acceptent : Vanmarcke Roger, président; Halsband Léon, vice-président; Delroisse Marcel, secrétaire; Paul Reckelbuss, trésorier; Luc Devillers, collaborateur technique.

Fait à Waterloo , le 20 avril 1990.

Le vice-président, Halsband Léon.

Le président, Vanmarcke Roger.

ON7WR/P, FIELD-DAY A HERBUCHENNE les 2 et 3 JUIN par ON4BE

Participaient à cette activité : ON1KPF, ON1KOT, ON1KNP, ON1KFZ, ONL6687, ONL André Goffard, ON4OT, ON4TX et XYL, ON4KST, ON4BE et XYL, ON5FQ, ON5YI, ON5YN, ON7ZB, ON7NK et XYL.

C'estvers 8h30, le Samedi matin que la caravane a démarré. Après une longue route, nous sommes arrivés sur les hauteurs de Dinant. Le but c'était de participer au field-day 2m et 70cm. L'emplacement était magnifique et ressemblaitbien plus à unparc qu'à un verger. Par expérience, nous avons commencé par monter deux tentes, avant de monter les mâts et les antennes. Dix minutes plus tard, fidèle au rendez-vous depuis cinq ans. la "drache" était présente.

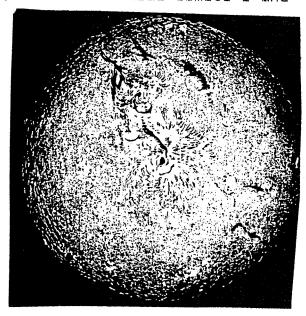
Aprèsquelques déboires dans le montagede notre mât rotatif (remis en état par ON4TX et ON4OT), celui-ci s'est érigé grâce à un système astucieux de bras de levier (mis au point par Pierre, ON5YI). Le mât rotatif était surmonté de 2x17 éléments en phase avec un préampli GAsFet. En 70 cm, le pylone de 12 m (type Gendarmerie) a été vite monté grâce à une potence construite par Marc de ON1KOT, il comportait une antenne 19 éléments et également unpréampli GAsFet. A 14h GMT, toutle montage était terminé et les QSOpouvaient démarrer, le tout était alimentépar un groupe fourni par notre ami Francis.

Le soir, le gastro a commencé par un apéro bien arrosé de cidre de pêche, suivi d'une salade grecque, le plat principal étant une salade liégeoise, le dessert : salade de fruits, le tout arrosé d'un petitrosé de Provence. Les XYL etON4TX étaient à la base de la confection de ce souper.

Il y avait peu de trafic en UHF, par contre le 2 m battait son pleinen cette fin de journée. Plusieurs OM du coin sont venusnous rendre une petite visite. Lanuit fut courte et particulièrement froide. A huit heures du matin, Patrick, ON1KNP nous apportait les couques et les pistolets tout frais des fours de l'ami ON1KLK. Il y avait un peu plus d'activité sur le 70cm par le démarrage des stations françaises sur cette bande.

Tout doucement, nous arrivonsau gastro de midi avec aumenu du cidre à la framboise, cotelette géante, saucisses diversesau barbecue, rizavec piperade, tartes diverses, le tout arrosé par le même petit rosé de Provence.

Ensuite est venu le temps de tout démonter, juste avant la pluie. Celui-ci a été plus rapide que le montage, heureusement! 253 Qso ont été réalisés en 2m avec une distance de plus de 700 km, et une quarantaine de Qso en 70cm, avec desliaisons de plus de 500 km.


Sans Jean de ON6UP, qui nous avait prêté son terrain et qu'ill'avait magnifiquement aménagé, cetteactivité n'aurait pas été possible. Nous devons encore le remercier ici car tout au long dece fiel-day il nous a soigné "aux petits oignons". Il ne fautpas oublier non-plus les XYL: Yolande, Françoise et Yvonne qui tout au long des 2 journées ont été sur la brêche et ont dû nous supporter. Tous les OM,ONL qui nous ont aidés dans lesdifférents compartiments sont biensûrs aussi remerciés et ont fortement contribué à la réussite de ce field-day.

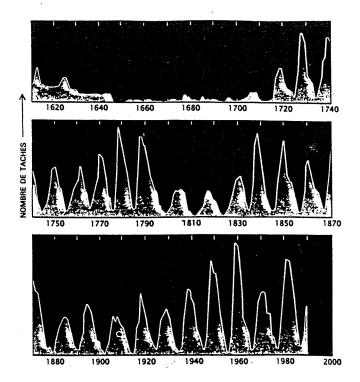
Pour toutesuggestion concerant :pylones, antennes, tentes, matérieldivers, je me tiens à votre disposition afin de collecter les idées et de donner une suite positive dans la mesure de mes moyens. Amicales 73 à tous et à l'an prochain.

d'après ARRL Handbook et Scientific American

Quand nous sommes allongés sur une plage ou quand nous nous promenons en rase campagne, le soleil nous semble d'une

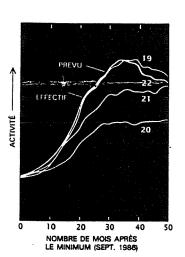
ardeur constante. Pourtant c'est une étoile variable. Le cycle bien connu des tâches solaires, de période égale à 11 ans, n'est qu'un des aspects d'un cycle d'activité magnéétique de période égale à ans, qui varie l'émission de la lumière visible, des rayonnements UV, des rayons X et des particules chargées. rayonn@ments et ces particules réchauffent et dilatent atmosphère terrestre. provoquent les aurores. perturbent la transmission du courant électrique par 105 lignes à haute tension modifient la couche d'ozone. Les variations de l'activité

solaire ne sont elles-mêmes pas régulières : elles étaient différentes au 17e siècle et elles changeront probablement encore. Il influence aussi les communications radio au niveau local et DX. Les conditions varient avec les cycles solaires et terrestres tels : heure, jour et saison. De même la latitude et la longitude interviennent aussi. Il existe aussi des cycles solaires à court et à moyen terme qui influencent les conditions de propagation, faiblement à courte distance mais de façon prépondérante à longue distance. Tout ceci explique pourquoi les prédictions de propagation font partie d'une science inexacte. On cherche aujourd'hui à savoir s'il est possible de prévoir l'évolution de l'activité solaire.


Les premiers espoirs de prévision sont apparus en 1843, quand le pharmacien SCHWABE, qui observait le soleil en amateur remarqua que le nombre des tâches solaires variait avec une périodicité de dix ans environ. Intéressé par les observations de Schwabe, le Directeur de l'observatoire de Zurich entreprit une recension quotidienne des tâches solaires en se laissant aider par les astronomes du monde entier : simultanément il rechercha l'évolution du nombre de ces tâches durant les 150 dernières années d'observation et conclut que la période du cycle était égale à 11,1 ans, malgré d'importantes irrégularités.

Depuis 1715, le nombre des tâches solaires a oscillé sans interruption. Depuis 1848, la période a varié entre 10 et 12 ans, et l'amplitude du cycle a été très irrégulière : le nombre annuel moyen de tâches est compris entre 45 (en 1804 et 1818) et 190 en 1957. Ce record pourrait être battu avec le cycle en cours, qui semble correspondre au maximum d'activité solaire depuis le milieu du 19e siècle.

Entre 1645 et 1715, le nombre des tâches solaires n'a pas varié cycliquement : les tâches étaient rares. Cet affaiblis-

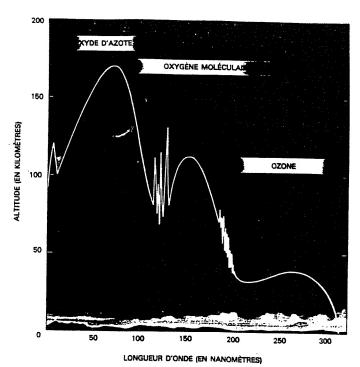

sement de l'activité solaire est le "minimum de Maunder". astronomes ont d'abord négliqé les études de Maunder. Toutefois on a récemment prouvé que Maunder avait décrit une manifestation remarquable bien réelle de l'activité solaire. Le minimum de Maunder eut lieu lors d'une période climat particulièrement froid. la "petite glaciation", qui eut lieu du 16e au 18e siècle.

Une manière plus moderne mesurer l'activité solaire générale est le flux solaire. s'adit d'une mesure effectuée tous les jours à la mëme heure du signal sur 2800 En fait, ce flux solaire est en relation directe avec le nombre de tâches solaires et il est exploitable de façon plus directe que les tâches.

LES OSCILLATIONS MAGNETIQUES.

Les astrophysiciens savent aujourd'hui que le cycle des tâches solaires n'est qu'un aspect, le plus visible, d'une oscillation du champ magnétique solaire ; cette oscillation modifie la surface, l'atmosphère et probablement les zones les plus profondes du soleil. G. HALE et ses collègues détectèrent les premières manifestations de cette oscillation magnétique, dans le spectre de la lumière émise par les taches solaires. En analysant cet effet. physicien Hale détermina que l'intensité du champ magnétique, autour des tâches solaires. était de 0,2 à 0,3 Teslas, c'est-à-dire 10.000 fois supérieure à celle du champ magnétique terrestre ! La plupart des tâches solaires étaient appariées, formant des dipoles magnétiques géants, parallèles à l'équateur solaire. En 1912, Hale annonça que les sens des dipoles s'était inversé, pour les premières taches du nouveau cycle. En 1924, il disposait d'informations suffisantes.

2. LE CYCLE SOLAIRE se manifeste notamment par un changement du nombre de taches à la surface visible du Soleil (à gauche). Lors du « minimum de Maunder », entre 1645 et 1715, les taches disparurent alors que les climats se refroidissalent sur la Terre. Le cycle actuel (le cycle 22) devrait culminer en février 1990; plus intense que les deux cycles précédents, il surpassera peut-être le cycle 19, le plus actif jamais observé (ci-dessus).


UV SOLAIRES ET OZONE TERRESTRE.

Le cycle magnétique perturbe également les couches supérieures de l'atmosphère solaire (la chromosphère), la couronne, les vents solaires. Bien que ces couches soient plus éloignées de la source nucléaire de chaleur que la photosphère, le plasma perd peu d'énergie et reste à des températures très élevées (plusieurs millions de degrés) bien

qu'il reçoive peu d'énergie.

Les couches externes, très chaudes, de l'atmosphère solaire sont à l'origine de variabilité des émissions rayons X et UV, la chromosphère également une grande partie du rayonnement UV et est responsable de la variabilité de l'émission des UV entre et 320 nm. Pendant les périodes d'activité solaire intense. l'atmosphère terrestre réchauffe, au-dessus de 100 km d'altitude, et la température de l'ionosphère peut tripler, à 600 km d'altitude, l'atmosphère peut devenir 50 fois plus dense que lors de périodes à de faible activité.

Le rayonnement UV proche interagit plus avec la couche d'ozone terrestre, i 1 varie avec une période de 27 iours (due à la rotation du soleil), aux longueurs d'onde inférieures à 300 nm, les variations de période égale à 11 ans d'environ 20%.

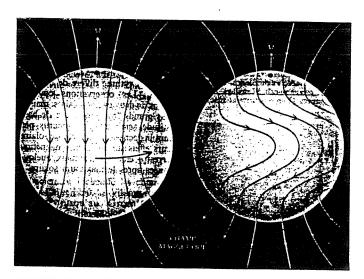
6. LA PÉNÉTRATION DES RAYONNEMENTS SOLAIRES dans l'atmosphère terrestre dépend de leur longueur d'onde. Ce graphique indique l'altitude à laqueille la moitié du rayonnement est absorbé. À 50 kilomètres d'altitude, les oxydes d'azote bloquent les émissions ultraviolettes de courte longueur d'onde. Aux altitudes inférieures, l'ozone et l'oxygène moléculaire absorbent le rayonnement ultraviolet de grande longueur d'onde, qui est également dangereux. Les variations d'émissions ultraviolettes par le Soleil modifient la structure de la couche d'ozone terrestre.

DES TROUS DANS LA COURONNE.


L'intensité de l'émission de particules chargées, soleil, dépend des conditions qui règnent dans les couches extérieures à la photosphère. Les particules qui interagissent le plus avec la terre sont les protons éjectés par la couronne solaire. Ils se déplacent à une vitesse proche de celle de la lumière. Certaines pannes de systèmes informatiques pourraient resulter de ces émissions de protons. Quelques dizaines d'éruptions de ce type ont lieu pendant un cycle solaire, mais leur fréquence augmente quand l'activité solaire est maximale. Le vent solaire provoque aussi des phénomènes visibles Le vent solaire est un plasma de faible énergie, il n'atteint pas la surface de la terre, car il est dévié par le champ magnétique terrestre, les fluctuations du vent solaire induisent des courants électriques dans les reseaux വ് ക്ര conducteurs, comme 105 lignes à haute tension ee t 105 pipelines. Le 13 Mars 1989, un orage magnétique dü à des éruptions solaires a mis momentanément hors service le électrique du Québec.

Pour indiquer que ces changements de polarité magnétique avaient lieu au cours de chaque minimum d'activité : le cycle de 11 ans n'était que la moitié d'un cycle magnétique de 22 ans. Les magnétogrammes enregistrés ont notamment révélé qu'à la surface du soleil, le champ magnétique est confiné dans les régions qui ne couvrent que quelques pour cent de la photosphère (la couche qui forme la surface visible du soleil). On sait désormais que la forme du champ magnétique solaire est

beaucoup plus complexe que celle du champ terrrestre, lequel est analogue à celui d'un aimant. Malgré de nombreuses études effectuées depuis un demi-siècle, l'o rigine du cycle magnetique solaire reste mal connue. C'est probablement le mouvement du plasma solaire dans le champ magnétique qui fait varier celui-ci. Vers 1860, on a démontré que les couches externes du soleil ne tournent pas à la même vitesse sous toutes les latitudes : les régions équatoriales tournent en 25 jours, environ 25% plus rapidement qu'aux pôles, la vitesse diminuant régulièrement de l'équateur vers les påles. Ces variations de la vitesse de rotation engendrent probablement le champ magnétique solaire par un "effet dynamo". Les éruptions magnétiques seraient en partie responsables des inversions de polarité entre chaque cycle de taches solaires. L'atténuation de l'ancien champ magnétique, lors des éruptions, formation d'un nouveau champ, la rotation particulière l'étoile expliquent cycle magnétique solaire.


LE CYCLE DES TACHES.

Bien avant que corrélation tache-propagation soit connue. les montées et descentes périodiques du nombre de tâches furent étudiées pendant de nombreuses années. Les cycles durent en moyenne 11 ans. Ils peuvent être aussi courts que 9 et aussi que 13. Les maxima et minima des cycles varient eux aussi grandement. Le cycle 19 a atteint son maximum en 1958 nombre de avec un taches supérieur à 200, le cycle 20,

3. LES LIGNES DE CHAMP MAGNÉTIQUE piègent de gigantesques courants de gaz chand et ionisé dans l'atmosphère solaire; ces courants apparaissent sous forme de raies noires sur les photographies en ultraviolet loiatain (en haut). Les plus grands courants proviennent des taches solaires. L'image magnétique du Soleil correspondante révèle les champs magnétiques intenses associés aux courants (en bas). Les zones sombres et les zones claires ont des polarités opposées : les champs les plus intenses sont présents dans les régloss dipolaires actives.

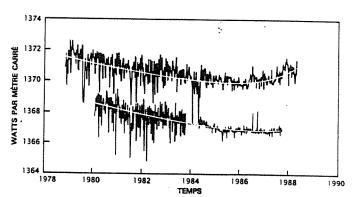
4. LA ROTATION DIFFÉRENTIELLE du Soleil semble commander le cycle magnétique solaire: en tournant à des vitesses différentes, les diverses zones à la surface du Soleil entrainent et déforment les lignes de champ magnétique. L'équateur tourne en 25 jours environ, mais les régions de latitudes moyennes tournent en 28 jours seulement; après plusieurs rotations, les lignes de champ, initialement orientées du Nord au Sud (a) se déforment, sont étirées selon l'équa-

teur et s'intensifient (b). Les taches solaires apparaissent là où les tubes de champ magnétique les plus intenses émergent à la surface ; les points de sortie et d'entrée des tubes sont de polarité opposée (c). Les taches solaires se forment généralement par paires, aux mêmes latitudes, car elles suivent l'étirement du champ magnétique. Les paires de taches sont de gigantesques dipôles magnétiques, orientés on sons inverse dont libémienhère Nord.

d'une intensité proche, atteint seulement 120 en 1969, par opposition, le cycle 14 atteignit 60 en 1907. Le tracé d'un cycle solaire n'a pas une forme sinusoïdale, la montée est plus rapide que la descente, mais n'est jamais clairement

définie.

LES RADIATIONS SOLAIRES.

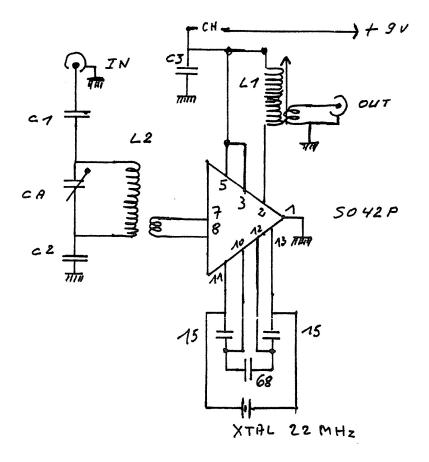

Les radiations solaires ont 2 principales composantes : les rayons UV et les particules chargées. Les UV arrivent à la vitesse de lumière. Ils accroissent la propagation (en même temps que le bruit solaire). Les particules arrivent plus lentement et prennent des chemins différents, ils peuvent parfois mettre 40 heures pour affecter la propagation, ses effets principaux sont l'absorption des ondes radio et des aurores boréales ou australes. Les variations dans le niveau des radiations peut être graduel, dépendant des tâches, ou soudain, dépendant alors des éruptions solaires. Un point important dans la prédiction des variations est la période de rotation du soleil (environ 27 jours). éruptions sont relativement courtes, mais les zones capables d'influer sur la propagation peuvent revenir toutes les 4 semaines. On a aussi

découvert des variations cycliques de l'irradiance (l'ensemble des émissions, à toutes les longueurs d'onde) et que les spécialistes nomment la "constante solaire". De la terre, les mesures de cette irradiance sont difficiles, car l'atmosphère terrestre est changeante, mais les instruments embarqués dans

les satellites ont révélé qu'elle varie parfois de 0,2% en l'espace d'une semaine. Ces variations à court terme résultent du passage des tâches solaires, sombres, et des facules, brillantes, lors de la rotation quasi mensuelle du soleil. La découverte de ces fluctuations date de 1980.

La constante solaire a décru lors de la décroissance de l'activité solaire, de 1980 à 1986, puis elle a réaugmenté en 1987, quand le nouveau cycle d'activité a commencé. Les mesures in-

5. LES VARIATIONS D'INTENSITÉ du rayonnement solaire ont été enregistrées par les radiomètres des satellites, Nimbus 7 (en bieu) et SMM (en rouge). De brusques décroissances de l'émission solaire ont produit des pics dans les enregistrements de SMM et dans la plapart de ceux de Nimbus 7. L'irradiance moyenne (en jaune) est maximale lorsque le nombre de taches solaires est maximal. Apparemment, lors des maxima d'activité, les facules brillantes agissent plus que les taches sombres (le décalage entre les courbes rouge et blese est dà à une différence d'étalonnage).


diquent que l'irradiance a diminué d'environ 0,1%, entre le maximum d'activité en 1980, et le minimum au milieu de l'année 1986. Plus précisément, le soleil est plus brillant quand le nombre de tâches solaires augmente ! Ces variations de l'activité solaire modifient-elles les climats terrestres? On calcule facilement l'effet du rayonnement solaire sur la température moyenne de la terre : la variation serait inférieure à 0,1 degré, c'est-à-dire très faible par rapport au réchauffement global.

CONVERTISSEUR 50 MHZ/28 MHZ.

Par ONL1371 (Jean Hanarte)

Extrait de RADIO-PLANS Nº 498 de Mai 1989.

(Avec diverses modifications)

Le circuit est vu câté cuivre

CI = SO42P

Xtal = 22 MHz

Sortie sur 28 MHz

L1 = 20 spires fil 0.5 Diam. 10mm

+ noyau

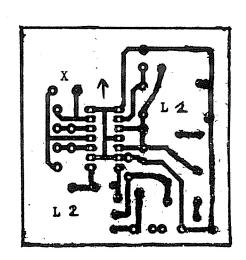
L2 = 8 spires fil 1mm Diam. 10mm

Couplage pour L1 et L2 par 2 spires fil

isolé

C = ajustable 30 pF

Choke VK200 ou similaire


C1 = C2 = 18pf

C3 = 22 nF

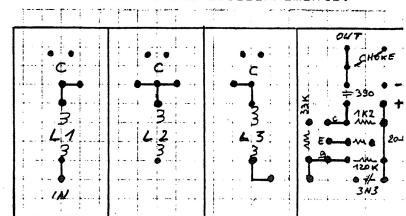
C4 = C5 = 15pF

C6 = 68pF

NB : Certaines connexions ne sont pas utilisées.

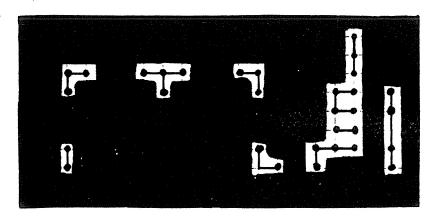
FILTRE PASSE-BANDE ET PRE-AMPLI 50 MHZ.

Par ONL1371.


Ci-dessous, vue côté cuivre pour perçage et implantation. Les selfs sont placées côté cuivre, les autres éléments sont du côté époxy. (Les selfs sont centrées entre des cloisonnements.

Tr = BF199

C ajustable de 40pF


L1 = L2 = L3 8 spires Diam. 8mm L 15mm fil de 1mm

Choke indispensable VK200

Le boitier est réalisé entièrement en époxy simple face et soudé. Réglage des C au maximum de gain.

Circuit-imprimé : vue côté cuivre.

Filtre Passe-bande : (les mesures ont été effectuées par Alain de ON4KST, à l'aide d'un analyseur de spectre.)

Atténuation : 0,5db

Réjection harmonique 2 : 37dB Réjection harmonique 3 : 59dB

Bande passante : 6 MHz

Un grand merci à ON4KST et à ON1KOT pou leur aide dans cette réalisation.

Cette réalisation avec le convertisseur décrit dans la page précédente et à l'aided'une antenne ground-plane a donné debons résultats. Stations entendues : ZS6, OH, SM, SV, 9H1, W4, etc...

AMPLI LINEAIRE 144 MHZ, IN 0,5W, OUT BOW

Par ON4BE.

Ce montage a été réalisé avec des transistors "Norme militaire" série BLY de Philips qui sont garantis à 50 : 1 de ROS!

- Ce montage inclut :

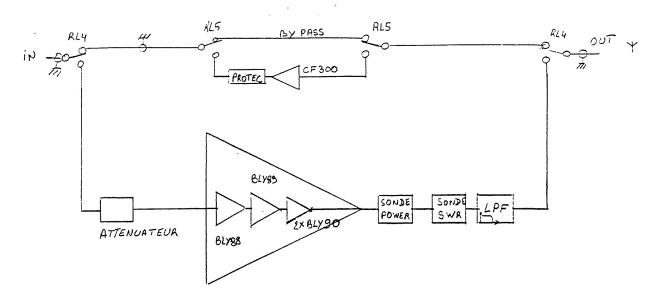
Protection haute température Protection température et commutant la

ventilation

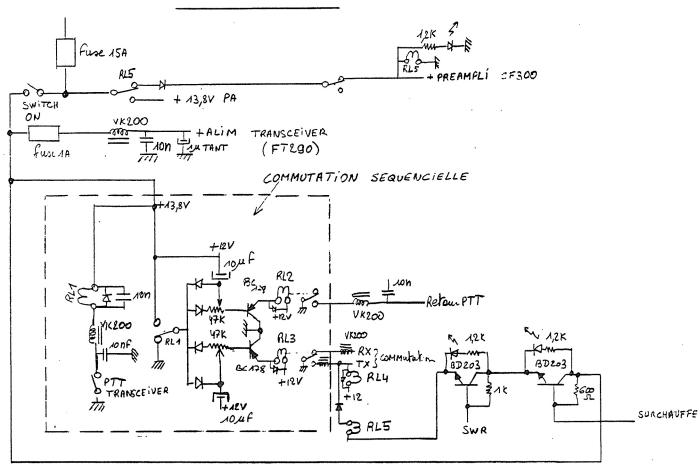
Protection mauvais ROS.

Indication de la puissance de sortie Sélecteur de puissance par pas de 3 dB Commutation à séquence, ampli et pré-

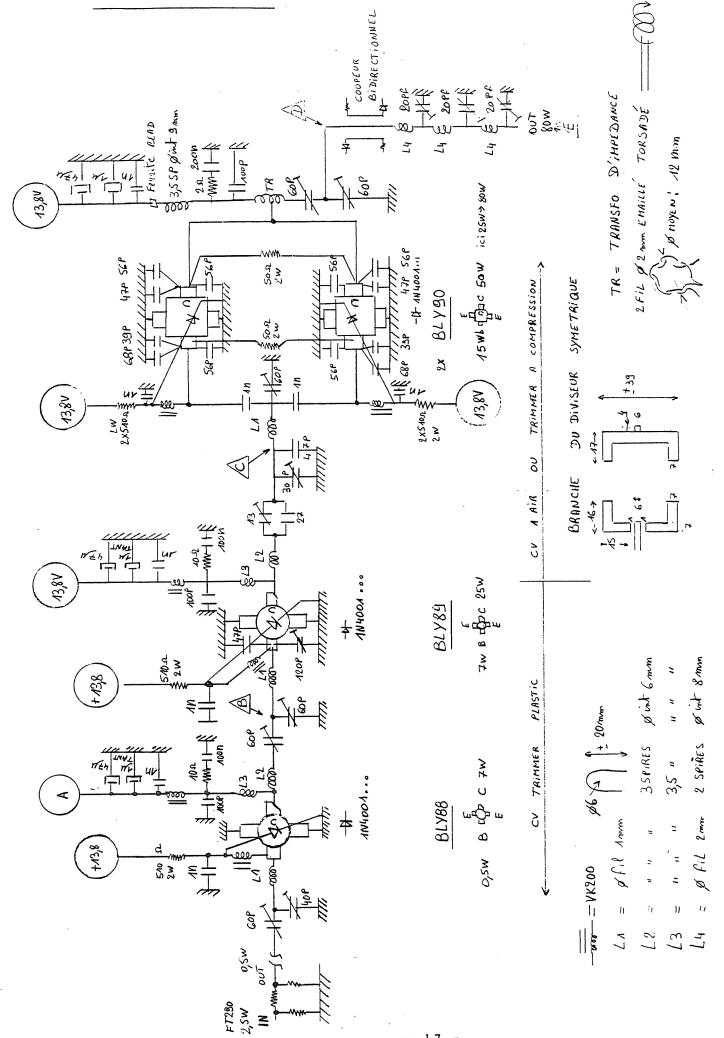
ampli tête de mât. Polarisation classe AB

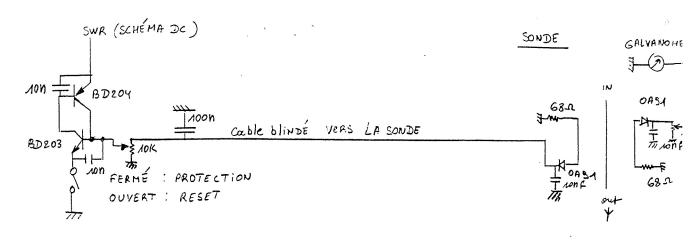

- Réglages :

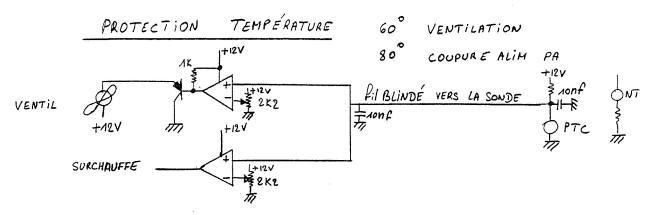
Tous les réglages s'effectuent au départ en classe C (voir article dans une précédente GIGAZ. Régler le 1er étage avec le wattmètre et la charge fictiveen (B). 2ème étage : mesure en(C) etainsi de suite jusque (E). Si uncondensateur par en fumée HI! le remplacer par un "griz"(500V) et/ou en mettre deux en parallèle de la moitié de la valeur.

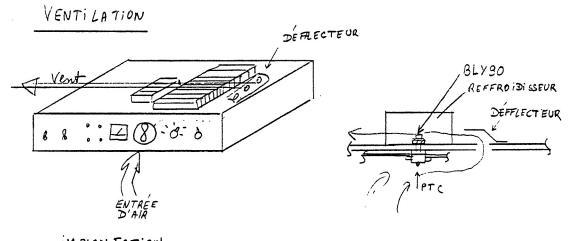

Réglage ROS, utiliser un 1/4 d'onde en fil de cuivre monté sur un SO239, plier les radiales pour avoir la valeur de ROSpour effectuer le réglage 10K "SWR PROTECTION".

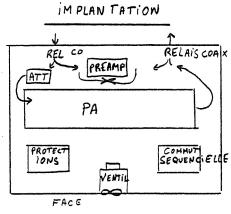
Le boitier est construit autour d'une semelle en alu qui fait 5mm d'épaisseur. Les refroidisseurs sont montés avec de la pâte thermo-conductrice et sont boulonnés dans des trous taraudés dans la semelle.

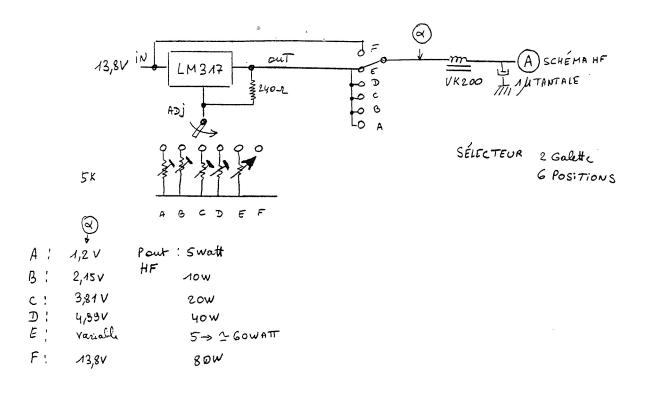

Bon fer à souder, et n'oubliez pas votre "smoke-scope".

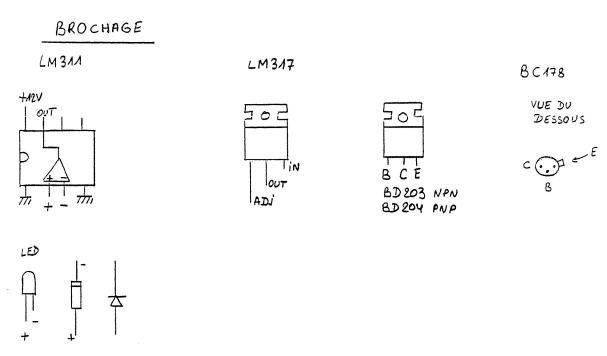


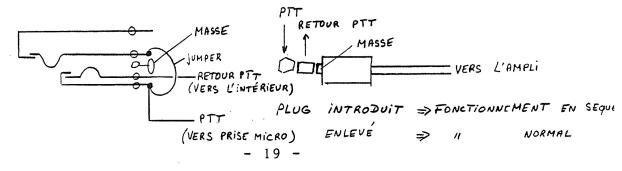

Schema DC




LA COMMUTATION PERMET EGALEMENT DE SWITCHER
UN PRÉAMPLI TETE DE MAT







MODIFICATION TRX (DANS MON CAS FT250)

JACK MOND EXT PTT DÉMONTÉ, REMPLACÉ PAR JACK STERÉO, FIL ISOLÉ.
ET INUTILISÉ
FIL CONNECTEUR MICRO (BLANC AVEC LIGNE VERTE) COUPÉ AVEC BRANCHEMENT
SUIVANT

. .